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Abstract—In this study, we present a framework for analyzing 
associations between patient cohorts and the trauma 
resuscitation procedures their patients received. Our 
framework works by quantifying associations between 
discovered patient cohorts and treatment patterns. We 
evaluated our framework on a trauma resuscitation dataset 
collected in a level 1 trauma center. Our experimental results 
show that using weights learned by our algorithm improves 
measurements of patient similarity. Four patient cohorts were 
then found via clustering, and statistically significant 
resuscitation patterns were discovered using process mining 
techniques. Though only tested on the trauma resuscitation 
process, our framework can be generalized to analyze other 
medical processes. 

Keywords—Process Mining; Patient Cohorts Analysis; 
Trauma Resuscitation; Medical Workflow Analysis. 

I. INTRODUCTION 
Patient cohort analysis is widely used to make clinical 

discoveries in medical research [1]-[4]. A patient cohort is 
defined as a group of patients who share similar context 
attributes. In trauma resuscitations for example, trauma 
patients of a same cohort share similar attributes such as 
demographics (e.g., age, gender, ethnicity, insurance, and 
medical history), injury information (e.g., injury type, injury 
severity, and injury area), and trauma attributes (e.g., day vs. 
night shift, trauma activation level and pre-arrival 
notification). In traditional patient cohort analysis [2][3][4], 
medical analysts define patient cohorts according to targeted 
attributes selected by medical experts; other context attributes 
were considered confounding and ignored. Oriented by 
domain knowledge, these studies were likely to reveal 
expected results but miss findings unfamiliar to experts. 

Process mining [1] is another set of analytical techniques 
that has been recently applied to medical process analysis. It 
has been used to discover medical process models [6], 
measure compliance of process executions to expert models 
[7], and analyze medical process deviations [8]. Existing 
process mining research [5] however, mostly mines 
knowledge from entire process datasets, without studying the 
differences among subsets of the data.  

In this paper, we present a framework for analyzing 
medical process data by combining both process mining and 
patient cohort analysis. Our medical process data consists of 
process activity logs (e.g., trauma resuscitation executions) 
and context attributes (e.g., patient demographics) associated 
with each process case. Our framework works in three steps. 

First, it applies data exploration methods on patient attributes 
to find data-driven cohorts. Second, it discovers process 
patterns (e.g., treatment patterns) from activity logs using 
process mining techniques. Third, it tests the significance of 
the correlations between process patterns and patient cohorts.   

We applied our framework on a real-world medical 
process: the trauma resuscitation. The trauma resuscitation is 
a fast-paced process, where multidisciplinary teams need to 
rapidly identify and treat potentially life-threatening injuries 
in an injured patient. Analyzing correlations between 
treatment executions and patient cohorts can potentially 
improve our understanding of the process and hopefully 
improve patient outcomes.  

Our contributions in this study are: 
• A framework for discovering and analyzing the 

associations between trauma patient cohorts and 
trauma resuscitation procedures. Our framework is 
easy to implement and can be used for analyzing 
processes with event (or activity) logs and external 
context attributes.   

• A practical algorithm and experimental procedure to 
learn the weighted importance of attributes with little 
human intervention. Unit weights are usually 
assigned to attributes when calculating data similarity 
for clustering, as the actual significance of each 
attribute is unknown. In this study, we designed an 
experiment to very efficiently acquire medical 
experts’ input to supplement attribute weight 
learning.  

• An analysis of statistically significant correlations 
between context attributes (aggregated as patient 
cohorts) and discovered medical treatment patterns in 
a real-world dataset of 123 trauma patients.    

II. DATA DESCRIPTION AND FORMALIZATION 
One hundred and twenty-three trauma resuscitation videos 

were collected from the trauma bay of Children’s National 
Medical Center, Washington DC. The videos were reviewed 
jointly by a surgeon with Advanced Trauma Life Support 
(ATLS) [9] certification and trauma clinical nurse specialists 
to encode the activity traces (Table I (A)). A total of 7154 
main activities of 44 types were selected for this study. 
Twenty-six context attributes were collected from the trauma 
database or from medical chart review, including patient age, 
gender, trauma activation level, mechanism of injury 
(penetrating, blunt, burn, etc.), date and time of patient arrival, 
Injury Severity Score (ISS), Glasgow Coma Score (GCS), 



 

intubation status, and Abbreviated Injury Scale (AIS) (Table I 
(B)).  The collection and use of the data for this study were 
approved by the hospital’s Institutional Review Board.  

Here we first define terms and notations. The process log 
ࡸ = [ܿ(ଵ), … , ܿ()]்  is a vector of elements ܿ(). Each ܿ() =
{݅݀(), ,()࢞ {()ࢀ  (Table I (D)) representing a unique case, 
which is indexed with a unique case id, contains the activity 
trace ࢀ() , and has a vector ࢞()  of context attributes. An 
activity trace is ࢀ() = [ܽଵ

(), … , ܽ
()]் , where m total 

activities a are ordered by activity start time. Traces of 
different executions may have varying lengths because 
complex processes may contain optional, omitted, or even 
erroneously performed activities. Context attributes ࢞() =
ଵݔ]

(), … , ݔ
()]்  is a vector of ݊  recorded patient 

demographics, injury information, and trauma attributes.  

III. METHOD 
In this section, we describe the core techniques we used in 

attribute weight learning, patient cohort discovery, process 
mining, and statistical analysis. We learned the attribute 
weights to decide the importance of different context 
attributes. With this information, we can find more accurate 
patient cohorts through clustering algorithms. We then mined 
the treatment patterns within each patient cohort and analyzed 
them with statistical methods.   

A. Attribute Weight Learning 
In our framework, patient cohort is decided by 

unsupervised clustering. The clustering performance is highly 
associated with the attributes used. The discovered patient 
cohorts may be meaningless if irrelevant or unimportant 
attributes are used. Due to lack of any prior knowledge, the 
attribute weights are typically set to unit weights (i.e., all 
attributes have the same weight as one). With domain 
knowledge available, it is possible to obtain the attribute 
weights by asking medical experts to provide a score (e.g., in 
scale of 0 – 10) for each attribute. This approach however is 
difficult to apply in practice. We tried this method by asking 
the medical experts in our team to decide a dictionary of 
attribute weights. Our medical experts later deemed it too 
arbitrary to manually set quantified weights across all 
attributes. Even if the medical experts could provide a set of 
weights, it would likely heavily bias the results towards their 
domain knowledge, leading to an “expected” result. Hence we 
designed a simple experiment to collect medical decisions and 
developed a learning algorithm for learning attribute weights.  

Our experiment used 41 sets (denoted as S) of three 
patients each (e.g., Patients A, B, C in Table II), randomly 
drawn (without replacement) from the trauma resuscitation 
dataset. A surgeon was asked to decide the most similar pair 
among the three patients, (A, B), (A, C) or (B, C),  based on 
their context attributes only. They used their domain 
knowledge to judge how important the differences of 
attributes were, and decided which pair of patients were more 
likely to be in a same cohort. In our example (Patients A, B, 
C in Table II), our medical expert labelled patient pair (B, C) 
as the one most likely to be observed in a same cohort. This 
experiment is simple and does not require much human effort. 

We then used these labeled results (denoted as PDr) as inputs 
to our attribute learning algorithm (Alg. 1).  

Our learning algorithm was designed with the core idea 
that by adjusting the weights of context attributes, we can 
increase the classification accuracy (i.e., deciding which pair 
of patient is more similar). The similarity measure is defined 
using weighted Euclidean distance [10][11]:  

݀ = ( ݔ)ݓ
() − ݔ

())ଶ


ୀଵ
)

ଵ
ଶ (1)

where ݓ  is the weight given to the i-th component. ݔ
() and 

ݔ
() are the i-th context attributes of patients A and B. The 

categorical variables were converted into numeric by creating 
dummy variables. If distance ݀ < ݀  && ݀ < ݀ , it 
means that patient A and B were the most similar pair given a 
set of weights ࢝ = ,ଵݓ] … ,  ]். Then if the label given byݓ
medical expert is also pair (A, B), it is a hit, otherwise a miss. 
The overall classification accuracy over N patient sets is 
defined as the ratio of hits: 

ܽܿܿ =
(ݏݐℎ݅)݉ݑ݊

ܰ
 (2) 

Our algorithm updates the attribute weights iteratively. At 
each iteration, we test adding (Step 4) or subtracting (Step 10) 
a unit weight from a single attribute weight ݓ . An important 
boundary condition is ݓ ≥ 0 (Step 11), otherwise ݓ  does 
not have physical meaning in similarity calculation. Then we 
calculate the updated accuracy (Step 6 & 13) after addition 
and subtraction. Last, we update (Step 17-23) the attributes 
which lead to the highest accuracy (Step 16). The algorithm 
terminates when the accuracy stays unchanged for a defined 
number of iterations (Step 24). Alg.1 is based on greedy 
search [12]. At each step, we only update the weights on 
attributes which provide maximum improvement. Our 

TABLE I. ACTIVITY TRACE (A), CONTEXT ATTRIBUTES (B), DATA 
STATISTICS (C) AND DATA FORMALIZATION (D). 

Case ID Activity Start Time End Time
xx1 Pt arrival 0:00:00 0:00:01
xx1 Visual assessment-AA 0:00:45 0:00:52
xx1 Chest Auscultation-BA 0:00:55 0:00:58
xx1 R DP/PT-PC 0:01:04 0:01:05
xx1 Total Verbalized-GCS 0:01:29 0:01:30
xx1 Total Verbalized-GCS 0:01:50 0:01:51
xx1 Right pupil-PU 0:02:12 0:02:18
xx1 Left pupil-PU 0:02:19 0:02:24
xx1 Right pupil-PU 0:02:24 0:02:25
xx1 Visual inspection-H 0:02:33 0:02:34
xx1 Palpation-H 0:02:33 0:02:37

Case ID xxx1 xxx2
Age category 24-96 24-96
Sex Male Female
Night Shift 0 1
Weekend 0 0
Pre-arrival Notification 1 0
Trauma Activation Level Transfer Attending
Intubation 0 0
Glasgow Coma Score >13 1 0
Injury Type Blunt Penetrating
Injury Severity Score 5 12
Neck Injury Severity Score 3 5

(A) Trauma resuscitation trace (B) Context attributes
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(D) Data formalization

Properties Stats
Num. Cases (or Patients) 123
Num. Total Activities 7154
Num. Activity Types 44
Num. External Attributes 18
Data Collection Time Period 2014.08 – 2016.12
Size of Medical Team [7, 12]
Longest Trace (Num. Acts.) 110
Shortest Trace (Num. Acts.) 26
Avg. Num. Acts. in Traces 58.6

(C) Data statistics



 

algorithm gradually improves the weights and accepts 
suboptimal solutions, as finding the optimal solution is 
computationally difficult.   

B. Patient Cohorts Discovery 
To discover patient cohorts, we clustered the patients into 

cohorts with some clinical meaning. The patients being 
clustered into the same cohort must share similar relevant 
attributes, so we used the previously learned weighted 
attribute distance as the similarity measures during clustering.  

Numerous clustering algorithms were developed for all 
kinds of datasets and problems. Some clustering algorithms 
were specifically designed for certain data distributions (e.g., 
EM on Gaussian-distributed data and DBSCAN on noisy data 
[14]). In our study, the patient context attributes can be 
heterogeneous, with categorical, binary, and numerical types. 
Hence, to achieve the best generation of our framework, we 
chose two commonly used clustering algorithms: k-means 
clustering (centroid-based) [13][14] and hierarchical 
clustering (connectivity-based) [14].  

In addition, selecting the number of clusters is a difficult 
and well-known problem. Hierarchical clustering itself is 
widely used to intuitively decide the optimal number of 
clusters by visualizing the resulting dendrogram. Another 
widely used method is silhouette analysis [11]. The silhouette 
value is a measure of how similar a data point is to its own 
cluster (cohesion) compared to other clusters (separation). 
The silhouette score ranges from -1 to +1, where a high value 
usually indicates a better clustering configuration. We used 
both methods in our study. 

C. Workflow Discovery And Sequential Pattern Mining 
To discover the treatment patterns and procedures of 

different patient cohorts, we used two different techniques: 
workflow discovery and sequential pattern mining. Workflow 
discovery [5], the core component of process mining, aims to 
automatically extract workflow models from activity logs. In 
this study, we used Disco (https://fluxicon.com/disco/), a 
process mining tool based on a fuzzy workflow mining 
algorithm [17]. However, for complex processes like ours, 
these workflow discovery algorithms often generate 
spaghetti-like models [5] which are difficult to interpret. 
Searching for differences between several treatment workflow 
models can be even more challenging. The sequential pattern 
approach can help address this limitation. Treatment patterns 
can be discovered from activity traces using sequential pattern 
mining algorithms. Although numerous sequential patterns 
may be found, the significance of the patterns can be evaluated 
using statistical methods. Only statistically significant 
patterns need manual analysis. In our implementation, we 
used SPADE [18], an efficient algorithm for mining frequent 
sequential patterns.  

D. Statistical Analytics 
Statistical analyses were used to study the associations 

between the treatment patterns and patient cohorts. 
Differences in the number of treatment patterns between 
patient cohorts were compared using Student’s t-test [15]. 
Student’s t-test determines whether the means of two sets of 

TABLE II. CONTEXT ATTRIBUTES (1ST COLUMN), A SET OF THREE 
PATIENTS (2ND-4TH COLUMNS), AND THE WEIGHTS LEARNT FROM ALG.1. 

Attributes Patient 
A 

Patient 
B 

Patient 
C … Weights 

Learnt 
1AGE Group 0 0 2 … 0 
1Gender (male = 1) 1 1 1 … 0 
2Transfer 1 1 0 … 0 
2Stat 0 0 1 … 0 
2Attending 0 0 0 … 0.14 
3Blunt 1 1 1 … 1 
3Penetrating 0 0 0 … 1.31 
3Animal Bite 0 0 0 … 0.81 
3Burn 0 0 0 … 0 
3No Injury 0 0 0 … 0.81 
2Non-critical admission 1 1 0 … 1 
2Critical Admission 0 0 0 … 0 
2Discharged 0 0 1 … 0 
2ETA Now 0 0 1 … 0 
2Weekend 1 0 0 … 0 
2Intubation 0 0 0 … 0.14 
2Daytime 0 0 1 … 0 
3GCS>13 1 1 1 … 0.14 
3ISS Group 0 0 0 … 0 
3AIS_HEAD_NECK 2 0 0 … 0 
3AIS_FACE 0 0 0 … 0 
3AIS_CHEST 0 0 0 … 2.39 
3AIS_ABD_PELVIC 0 0 0 … 0 
3AIS_EXTREMITIES 0 0 0 … 0.25 
3AIS_EXTERNAL 0 1 1 … 0 
3Maximum AIS 2 1 1 … 0 

1Patient demographics     
2Trauma attributes 

3Injury information 

Algorithm 1.  Patient Attribute Weighting 
Input: N random drawn sets ࡿ; labels from medical expert ࡼ 
Output: Learnt Attribute weights ࢝ 
Step 1. Initialize ࢝ ∈ ℝଵ×, and ࢉࢉࢇ ∈ ℝଵ×ଶ as vectors of zeros  
Step 2.  do 
Step 3.     for each weight ݓ ∈  do ,࢝
Step 4.   ݓ++ 
Step 5.   Calculate the most similar pair ࡼ௦ in each set of ࡿ  
Step 6.   Calculate ܽܿܿ (ܽܿܿ ∈  ௦ࡼ  andࡼ based on (ࢉࢉࢇ
Step 7.    ݓ-- 
Step 8.  end for 
Step 9.  for each ݓ ∈  do ,࢝
Step10.   ݓ-- 
Step11.   if ݓ < 0, ݓ++, continue 
Step12.   Calculate the most similar pair ࡼ௦ in each set of ࡿ 
Step13.   Calculate ܽܿܿା based on ࡼ and ࡼ௦ 
Step14.   ݓ++ 
Step15.  end for 

Step16.  ܽܿܿ௫ = max (ܽܿܿଵ, ܽܿܿଶ, … , ܽܿܿ, ܽܿܿାଵ, … , ܽܿܿଶ), and 
let ߙ be the number of maximum values.  

Step17.  for ݅ in range(1, 2݊) 
Step18.   if ܽܿܿ == ܽܿܿ௫ && ݅ ≤ ݊  
Step19.    ݓ += 1/ߙ 
Step20.   else if ܽܿܿ == ܽܿܿ௫ && ݊ + 1 ≤ ݅ ≤ 2݊ 
Step21.    ݓି −= 1/ߙ 
Step22.   end if 
Step23.  end for 
Step24. until ܽܿܿ௫ keeps unchanged for a defined number iterations 
Step25. return ࢝ 

* the source code is available at https://github.com/marlonli/PatientCohortsAnalysis.



 

data (dataset size can be small) are significantly different. Two 
different kinds of comparisons can be performed for patient 
cohort analysis: comparison between cohort pairs (one-vs.-
one), or one cohort with the rest of the cohorts (one-vs.-rest). 
We set our statistical significance level at p<0.05 [15].     

IV. EMPIRICAL EXPERIMENTAL RESULTS 
Our experimental results involve three aspects: the 

performance of the attribute learning algorithm, the patient 
cohorts we discovered, and the resuscitation patterns with 
their significance test results.    

A. Attribute Weights 
The initial accuracy (Eq. 2) using unit weights (Figure 1) 

was 0.34 before applying the weight learning algorithm. The 
accuracy is monotonically increasing (Alg.1), rising quickly 
in the first 50 iterations before slowing down and converging 
at 0.61. Our results (Table II) show that the injury features 
(injury mechanism, injury area, and severity score) are more 
important than patient demographics (age, gender, etc.) and 
resuscitation attributes (i.e., stat, attending, daytime, etc.). 
Most patient demographics and resuscitation features have 
zero weights. Two resuscitation attributes with non-zero 
weights were “attending” and “intubation”. “attending” is a 
level of the categorical variable “Trauma Activation Level” 
(Table I (B)), so is “stat” and “transfer”. Both “stat” and 
“attending” level activations represent the patient arriving 
from the scene of injury, with stat being a standard acuity level 
activation and attending being the highest acuity level 
activation. The “intubation” is an attribute indicating whether 
the patients were intubated prehospital. The patients who 
could not maintain their airway were intubated. Within injury 
features, the injury mechanism attributes (penetrating, blunt, 
etc.) had the most non-zero weights. “AIS_CHEST” (severity 
level of an injury to the chest) had the highest weight among 
the injured body regions.  

B. Patient Cohorts 
The silhouette analysis suggested the number of clusters 

to be either four or eight (two peaks in Figure 2 (c)). From the 
dendrogram (Figure 2 (d)), we can easily identify four clusters. 
We thus decided on four clusters. Although the silhouette 
score is higher with eight clusters, our result shows the 

additional four clusters were partitioned from the two smaller 
clusters of the four clusters. Some of them were too small (few 
data points), making them a better fit for specific case studies 
rather than being included in a cohort analysis.  

Our result also showed that k-means and hierarchical 
clustering returned the exact same four clusters (Figure 2 
(b)(d)). The k-means clustering result is visualized after 
dimension reduction with principal component analysis [16] 
(Figure 2 (b)). We also ran the clustering on the same dataset 
with unit attribute weights, generating very different results 
(Figure 2 (a) vs. (b)). With unit attribute weights, four similar-
sized clusters were formed. No clear boundary can be noted 
between the clusters.  The distribution of data points (a) is 
much sparser than that of (b) because all attributes were taken 
in the similarity measurement. As it is rare that multiple 
patients have very similar context attributes, the data points in 
(a) cannot be distributed as densely as the clusters in (b), 
where only important attributes were taken into account 
(Table II). Four patient cohorts (from cohort 0 to cohort 3) 
include 55, 13, 49, and 6 patients respectively. To better 
understand the characteristics of each patient cohort, we used 
radar charts (Figure 3) to help visualize attribute distribution 
within each patient cohort. We also calculate the significance 
of each attribute in its own cohort versus the rest of the cohorts 
(Table III). Of the 26 attributes, we visualize only the ones 
with non-zero weight (Table II). Both cohort 0 and cohort 2 
include patients with blunt injuries and GCS over 13. The 
difference is in whether the patients were critical admitted. 
Cohort 1 and 3 are two smaller cohorts. Their distributions are 
very different from the rest. Cohort 1 includes patients of the 

Figure 2. (a) K-means clustering results of 123 patients without unit weights. 
The number of clusters (k) was set to 4. Dots of the same color are from the 
same cluster. (b) K-means clustering results (k = 4) of 123 patients using 
weighted attributes. (c) The value of average silhouette (y-axis) changes as 
the number of clusters (x-axis). (d) The dendrogram plot of the hierarchical 
clustering results.  

 
Figure 1. Attribute weight learning process. The accuracy increases across
iterations.  



 

remaining injury mechanisms except blunt. Only cohort 3 
includes patients with chest injury .  

C. Resuscitation Workflow and Patterns 
With patient cohorts identified, we performed workflow 

mining and sequential pattern mining on each cohort. The 
complete workflow models are spaghetti-like because of the 
large number of non-zero transitions. To obtain descriptive 
and interpretable workflow models, we applied two model 
simplification methods. First, we focused our study on a 
specific medical phase at a time. A medical phase is a part of 
the complete trauma resuscitation process, e.g., airway 
assessment phase (checking patient’s airway), disability 
assessment phase (assessing patient’s disability level), head 
assessment phase (assessing injuries on patient’s head), etc. In 
this paper, we use the head assessment phase as a case study 
for workflow and sequential pattern analysis. Second, we 
pruned the workflow model by only preserving the most 
dominant incoming and outgoing transitions for each node. 
This method omitted many rare insignificant transitions.  

Our workflow results (Figure 4) on the head phase showed 
high similarity to the four head assessment workflows. All of 
them follow a similar sequential order “head (H) -> face (F) -> 
(nose (N) -> mouth (M)) || (eye (EY))) -> ear (EAR)”.  Two 
differences can be seen between the workflows of cohort 0 
and cohort 2. First, the occurrence of “visual inspection-head” 
is more frequent in cohort 0 than that in cohort 2. On the other 
hand, “left/right visual inspection-eye” are much more 
frequent in cohort 2. The medical explanation is that activities 
“left/right visual inspection-eye” can be optional, because 
there is another pair of activities “right/left pupil check” in the 
disability assessment phase (prior to the head assessment 
phase) to evaluate the patient’s neurological level. The pupil 
examination requires a light source to be used to assess pupil 
response. This exam is more thorough than only performing 
an unaided visual examination of the eye. In addition, because 
most patients in cohort 0 had a critical admission, these 
patients tended to have more severe conditions and the 
medical team tended to omit a second eye exam in favor of 
minimizing the time it took to transport these patients to the 
intensive care unit.   

By performing sequential mining algorithms on patient 
cohorts 0 and 2, we discovered 39,784 sequential patterns in 
total. 178 sequential patterns were statistically significant (a 
few are shown in Table IV). For example, “visual inspection-
head” is found to occur on average 2.87 times in cohort 0 
versus 2.06 times in cohort 2 (p-value = 0.026). Similarly, 
“visual inspection-back” is found to occur on average 1.77 
times in cohort 0 versus 1.27 in cohort 2 (p-value = 0.001). 
The potential medical explanation is that the patients in cohort 

TABLE III. P-VALUES OF EACH ATTRIBUTE OF A COHORT COMPARED 
TO OTHER COHORTS.  

Attributes Name Cohort 0 Cohort 1 Cohort 2 Cohort 3 
Attending  0.758 0.172 0.104 0.305 
Blunt 0.000 0.000 0.001 0.679 
Penetrating 0.040 0.000 0.064 0.111 
Animal Bite 0.203 0.000 0.249 0.749 
No Injury 0.068 0.000 0.100 0.648 
Non-critical admission 0.000 0.511 0.000 0.330 
Intubation 0.107 0.437 0.064 0.111 
GCS>13 0.019 0.260 0.045 0.437 
AIS_CHEST 0.042 0.375 0.034 0.000 
AIS_EXTREMITIES 0.756 0.529 0.208 0.214 

 

Figure 3. Radar charts visualizing the characteristics of the patient cohorts.
Each radar chart represents a patient cohort. Each attribute is depicted by the
node on the spoke. The number of patients in each cohort is shown in the
parenthesis, e.g., cohort 0 has 55 patients. 

TABLE IV.  SIGNIFICANT RESUSCITATION PATTERNS DISCOVERED FROM COHORT 0 AND COHORT 2  

Resuscitation Patterns Occur. Frequency Raw Count (Average) p-value 
Visual inspection-H 96.43% 97.96% 155 (2.87) 99 (2.06) 0.026 
Visual inspection-RUE 89.29% 93.88% 120 (2.4) 76 (1.65) 0.046 
Visual inspection-BK 94.64% 100.00% 94 (1.77) 62 (1.27) 0.001 
Visual inspection-H Æ …Æ R otoscopy-Ear 42.59% 10.20% 23 5 0.000 
Visual inspection-H Æ …Æ Palpation-RLE 29.63% 4.08% 16 2 0.000 
Log roll-BK Æ …Æ Visual inspection-BK, T-spine-BK 24.07% 2.04% 13 1 0.001 
Visual inspection-M Æ Visual inspection-N 33.33% 8.16% 18 4 0.002 
Visual inspection-BK, T-spine-BK Æ …Æ L-spine-BK 22.22% 2.04% 12 1 0.002 

 “Æ”-direct sequence; “Æ…Æ”-intervening tasks allowed 



 

0 were of critical admission types, indicating they may have 
more severe injuries than patients of cohort 2. Hence, it is 
more likely that after the medical team members perform 
rapid evaluation, they need to confirm the initial findings by 
reassessing the patient.   

V. RELATED WORK 
Patient cohort analysis is popular in the medical domain 

[1]-[4]. Traditional patient cohort analysis usually involves 
statistically testing a hypothesis across patient cohorts defined 
by targeted attributes. For example, Nelson et al [3] first 
proposed obese trauma patients had an increased risk of 
hypovolemic shock. They then defined three patient cohorts 
based on attribute body mass index (BMI), and showed that 
obese patients had a statistically-significant higher mortality 
rate due to hemorrhagic shock on admission. These studies are 
limited to only focus on the findings and cohorts medical 
experts are interested in, and are very likely to miss cohorts 
and findings they are not already familiar with.  

In addition, limited research focuses on both cohort 
analysis and process analysis. Two recent medical 
recommender systems incorporated both analyses. One 
treatment recommender system for cerebral infarction was 
recently presented based on electronic medical records (EMR) 
[20]. Typical treatment regimens and patient cohorts were 
extracted, and then recommendations were provided based on 
the most effective regimen for a given cohort. Another 
process-related work [21] adopted a similar framework. It 
clustered traces of process executions and extracted a 
prototypical execution of each cluster. A regression model 
was then trained to find the associations between process 
executions and patient attributes.  

Recently, data visual analytics tools for cohort and process 
analysis have been developed. CoCo [19] can be used to find 
differences between two groups (cohorts) of process traces 
and to highlight their significant distinguishing features (e.g., 
activity order, frequency, and duration). CAVA was designed 
to help domain experts work more independently and more 
quickly when performing retrospective cohort studies and 

temporal visualization of medical pathways [22]. VIT-PLA 
[23] was designed to compute and visualize the typical 
workflow procedures for each patient cohorts. Similar to 
Yang’s work [21], VIT-PLA finds patient cohorts according 
to the similarity of treatment procedures. In contrast to these 
studies, our work identifies patient cohorts based on context 
attributes and analyzes the treatment patterns across these 
patient cohorts.  

VI. CONCLUSION 
We introduced a framework for analyzing associations 

between treatment procedures and patient cohorts. The 
framework works by learning weights of context attributes by 
best-first search, deciding patient cohorts with clustering 
algorithms, discovering treatment patterns with process 
mining techniques, and analyzing the cohort-vs.-procedure 
through statistical analysis. We deployed and evaluated this 
framework on a complex real-world medical process, the 
trauma resuscitation. We uncovered four different patient 
cohorts from this dataset and discovered statistically 
significant treatment patterns across different patient cohorts. 
Our study provides evidence that the context attributes can 
affect treatment patterns (regimen) in trauma resuscitation. In 
the future, AI-based data-driven treatment recommender or 
decision support systems may be implemented in real-world 
medical process settings (e.g., surgical process, clinical 
process and trauma resuscitation process). A cohort-based 
system may have advantages over a universal system in this 
setting, as it can provide more accurate and personalized 
recommendations and decision support. On the other hand, 
this framework also suffers from a limitation that the data-
driven clustering approach may lack consistency when 
different clustering algorithms or similarity metrics are used.  
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Figure 4. Workflow models discovered from patient cohorts. The major differences between cohort 0 and corhot 2 are highlighted in the figure. Each node 
includes an activity type and the count of its occurrences. The transition represents the sequential order of activities and the numbers on the transitions 
represent the count of such sequential pattern.  
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