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I. PROBLEM STATEMENT AND METHOD 
Medical workflow discovery and analysis can help teams 

better understand their practice and potentially improve 
patient outcomes. In the past, medical experts designed hand-
made workflow models for this purpose. These models 
usually needed iterative revision for the experts to reach 
consensus. Actual practice, however, often deviates from a 
perceived ideal workflow model. Automatic workflow 
discovery algorithms [1] have recently been proposed to learn 
a workflow model from observed activity or event traces. 
These algorithms, however, can produce spaghetti-like 
graphical models, with many branches and loops. Although 
model interpretability is an initial requirement of medical 
process analysis, it is often difficult or impossible for medical 
experts to extract knowledge from these chaotic models. We 
present an algorithm for discovering interpretable medical 
workflow models that addresses these limitations. We show 
our preliminary results and evaluate our approach on a real-
world medical process.  

Our workflow discovery algorithm has two designs that 
make the discovered workflow model more interpretable. 
First, our algorithm finds a “backbone” sequential model to 
highlight in the final model. This design is inspired by the fact 
that a sequential structure is easier to understand when 
compared to a parallel structure. Second, our algorithm only 
produces left-to-right model structures, a property that 

prohibits looping sequences, reduces the model implicitly and 
enhances model interpretability.  

Our algorithm has two phases: discovering an alignment 
matrix, and then discovering a workflow model from the 
alignment. Given n activity traces ࢀ	 = ,ଵࢀ} … , {௡ࢀ , where 
each ࢀ௜ has a variable number of ordered treatment activities, 
௜ࢀ = {ܽଵ, … , ܽ௠}. The trace alignment algorithm [2] returns 
an alignment matrix M with the traces ࢀ as rows and activities 
of the same type as columns (Figure 1). For a given cell, if a 
matching activity cannot be found, a gap symbol (e.g., “-“) is 
inserted. The columns with activity occurrence probability 
larger than a predefined threshold ݐ	  are termed consensus 
columns and the corresponding activities in these columns are 
termed consensus activities. The sequence constructed from 
the consensus activities is termed the consensus sequence. The 
consensus sequence can be considered as the backbone 
workflow of the given medical process and represents a 
typical process execution. It records the most frequent 
activities in the trace and their sequential orders. The 
advantage of the consensus sequence is its interpretable 
sequential nature. The strict sequential property of the 
consensus sequence, however, does not allow parallel 
workflow branches. In addition, some of the non-consensus 
activities were found to be common-but-dispersed activities 
that appear in most traces. These types of non-consensus 
activities could not be aligned because they are interleaved 
with other consensus activities. If a non-consensus activity 
appears across a span of columns and the frequency of 
occurrences in those columns is more than or equal to ݐ, it is 
defined to be a common-but-dispersed activity (Figure 1). The 
span is defined as the maximum number of consecutive 
consensus activities across which a common-but-dispersed 
activity can be spread. The consensus activities in this 
approach are used as location markers. The use of span can 
greatly reduce the model complexity in complex processes.  

The 2nd phase of our algorithm (Alg. 1, Figure 2)  aims to 
include the common-but-dispersed activities into the 

Figure 1. Trace alignment matrix. The black bars represent consensus 
activities; the gray bars represent non-consensus activities. 

 

 
Figure 2. Proposed procedure for discovering the workflow model 

from an alignment matrix.  
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Algorithm 1.  Workflow Model Discovery From Alignment Results 
Input: Alignment matrix ࡹ, Threshold ݐ,  Span s 
Output: Discovered Workflow model ࡳ 
Step 1. Find the consensus activities ࡯௔ in ࡹ 

Step 2.  
Add the consensus activities ࡯௔ to a directed graph ࡳ, with each 
consensus activity as a vertex of the graph. 

Step 3. Find common-but-dispersed activities ࡯ௗ in ࡹ 
Step 4. for each ܿௗ in ࡯ௗ: 
Step 5. 
Step 6. 

Find nearest preceding consensus activity ܿ௣௥௘  
Find nearest succeeding consensus activity ܿ௦௨௖  

Step 7. Add edges ܿ௣௥௘ → ܿௗ, ܿௗ → 	 ܿ௣௥௘ to ࡳ 
Return ࡳ 

* the source code is available at: https://github.com/marlonli/WorkflowDiscovery
 



workflow model as branches. The algorithm takes alignment 
matrix M, threshold ݐ , and span ݏ	  as inputs and outputs a 
workflow model (represented by a directed graph). In steps 1 
and 2, we find the consensus activities and add them to the 
workflow model as the “backbone” of the graph. In the graph, 
each consensus activity transitions to the next consensus 
activity. In step 3, we iterate over non-consensus activities to 
find whether they are common-but-dispersed activities 
(denoted ܿௗ). For each ܿௗ, we find its nearest preceding and 
succeeding consensus activities, denoted as ܿ௣௥௘  and ܿ௦௨௖ 
respectively. Lastly, we include the common-but-dispersed 
activities into the model as new vertices and add edges from 
ܿ௣௥௘ to ܿௗ, and from ܿௗ to ܿ௦௨௖. 

II. EVALUATION AND PRELIMINARY RESULT 
The use of the data was approved by the Institutional 

Review Board of Children’s National Medical Center in 
Washington, DC. 113 endotracheal intubation (breathing tube 
insertion) records were manually coded using video review. 
This dataset includes 1394 treatment activities of 15 different 
types. The baseline method we used is Disco 
(https://fluxicon.com/disco/), a workflow discovery 
application based on the fuzzy mining algorithm [3].  

For our experiments, we implemented the recently 
published PIMA [2] as our alignment algorithm. The 
threshold ݐ was set to 0.5. The span ݏ was set to the maximum 

number of consensus activities, leading to discovery of 
common-but-dispersed activities in the process. For Disco, we 
manually set the activity filter to 50% (preserving activities 
that occur in at least 50% cases) and path (vertices) filter to 
20% (preserving the major paths) for a reasonable 
comparison. Although likely leading to a reasonable 
comparison, approaches for comparing parameters using 
different methods have not been established.  

Seven consensus activities and six common-but-dispersed 
activities were discovered by our approach (Figure 3). In 
comparison, 11 consensus activities were discovered by 
Disco. Activity “BVM” was found to occur twice in our 
model. It represents the oxygen delivery method using a bag 
valve mask. This activity is often to be repeated to ensure 
sufficient oxygen is given during the intubation process. Disco 
does not support multiple nodes representing activities of the 
same type. For this reason,  the multiple occurrences of 
“BVM” were reflected as loops in the model (e.g., BVM Æ 
RSI Sedative Meds Æ RSI Paralytic Meds Æ BVM in the 
Disco model). Sixteen loops (Table 1) were found in the Disco 
model. These loops compromised model interpretability. 
Another way to reduce the model interpretability is to reduce 
the number of branches. A branch is defined as a path that 
connects to but is not part of the main path (e.g., the consensus 
sequence). The Disco model has 14 branches, while our model 
only has six.  

III. CONCLUSION 
In this poster, we present a novel discovery algorithm that 

can produce more interpretable workflow model compared to 
baseline method. We present initial preliminary results using 
this approach. More comprehensive evaluation and numerical 
experiments will be needed to validate the value of this 
approach, including applying carefully defined metrics for 
assessing interpretability. 

 
Figure 3. The workflow model generated by our method (left) and Disco (right). In our workflow model, the blue nodes are consensus activities and the 

white nodes are common-but-dispersed activities. The number within a brace is the frequency of the activity. Disco did better in visualization, the 
activities of higher occurrence were darker and the edges of higher occurrence were thicker.  
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TABLE 1: THE STATISTICS OF THE WORKFLOW MODELS SHOWN IN FIGURE 3

Measures Disco Our Approach 
Num. of Activities 11 12 
Num. of Act. Types 11 11 
Num. of Braches 14 5 
Num. of Loops 16 0 
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